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This report details the work accomplished during my 2015 SULI summer 

internship at Sandia National Laboratories in Livermore, CA. During this 

internship, I worked on multiple tasks with the common goal of making 

uncertainty quantification (UQ) methods more accessible to the general 

scientific community. As part of my work, I created a comprehensive 

numerical integration example to incorporate into the user manual of a UQ 

software package. Further, I developed examples involving heat transfer 

through a window to incorporate into tutorial lectures that serve as an 

introduction to UQ methods. 

 

I. INTRODUCTION 

 My work during my SULI internship this summer consisted of several different 

projects, all with the goal of making uncertainty quantification tools accessible to a wider 

audience. The term uncertainty quantification (UQ) covers a wide variety of methods, but 

in a broad sense these are methods to enable predictive simulations by assessing all 

sources of uncertainty in computational models. These methods are useful across many 

disciplines, as predictive simulations are necessary when experiments are costly or 
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otherwise unfeasible3. To complete my projects, I used software developed at Sandia 

known as the UQ Toolkit (UQTk). UQTk is a collection of tools and libraries that can be 

used to quantify uncertainty in numerical model predictions. It is released as a C++ open 

source library and is available for download at http://www.sandia.gov/uqtoolkit/6. My 

initial task was to create a tutorial for the user manual on how to use UQTk to perform 

numerical integrations. Next, I created an example involving heat transfer through a 

window to include in a tutorial lecture on the fundamentals of UQ. Finally, I worked on 

expanding the window heat transfer example to include radiative heat transfer.  

 

II. UQTk MANUAL NUMERICAL INTEGRATION EXAMPLE 

 My main task this summer was creating a tutorial on how to use the Python 

interface of UQTk to perform numerical integrations. This tutorial was then incorporated 

into the UQTk user manual. It is crucial for user manuals to contain comprehensive and 

interactive examples, especially when the user may not be an expert in the field. The 

examples included in the distribution demonstrate the capabilities of the software, and 

help users see how they can use this software to assist in their research. Since I had just 

recently become familiar with the methods employed in my example, I was able to ensure 

that the example and the explanation were both at an appropriate introductory level. My 

example contains three Python scripts that are included in the software distribution. The 

corresponding section in the user manual5 begins with a theory section that explains why 

numerical integrations methods are needed in uncertainty quantification, as well as the 

specific methods employed in the example. An implementation section follows, which 
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explains the workflow of the example scripts. Lastly, there is a sample results section, 

which prompts the user to try running the scripts with specific input and provides sample 

results he or she can expect to see. These sections are found in condensed form below. 

A. Theory 

In uncertainty quantification, forward propagation of uncertain inputs often involves 

evaluating integrals that cannot be computed analytically. Such integrals can be 

approximated numerically using either a random or a deterministic sampling approach. 

Of the two integration methods implemented in this example, quadrature methods are 

deterministic while Monte Carlo methods are random. 

1. Quadrature Integration 

The general quadrature rule for integrating a function 𝑢(𝜉) is given by: 

 𝑢 𝜉 𝑑𝜉 ≈    𝑞!   𝑢(𝜉!  )!!
!!!  (1) 

where the 𝑁!   𝜉! are quadrature points with corresponding weights 𝑞!.  

The accuracy of quadrature integration relies heavily on the choice of the 

quadrature points. These quadrature points can be thought of as optimal points at which 

to evaluate the function, and there are countless quadrature rules that can be used to 

generate these points. 

When performing quadrature integration, one can use either full tensor product or 

sparse quadrature methods. While full tensor product quadrature methods are effective 

for functions of low dimension, they suffer from the curse of dimensionality. Full tensor 

product quadrature integration methods require 𝑁! quadrature points to integrate a 
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function of dimension d with N quadrature points per dimension. Thus, for functions of 

high dimension the number of quadrature points required quickly becomes too large for 

these methods to be practical. Therefore, in higher dimensions sparse quadrature 

approaches, which require far fewer points, are utilized. When performing sparse 

quadrature integration, rather than specifying the number of quadrature points per 

dimension, a level is selected. Once a level is selected, the total number of quadrature 

points can be determined from the dimension of the function. 

2. Monte Carlo Integration  

 One random sampling approach that can be used to evaluate integrals numerically 

is Monte Carlo integration.  To use Monte Carlo integration methods to evaluate the 

integral of a general function 𝑢  (𝜉) on [0,1]d  the following equation can be used:  

 𝑢 𝜉 𝑑𝜉   ≈    !
!  !
   𝑢!!

!!! (𝜉!) (2) 

The Ns   𝜉! are random sampling points chosen from the region of integration according to 

the distribution of the inputs. One advantage of using Monte Carlo integration is that any 

number of sampling points can be used, while quadrature integration methods require a 

certain number of sampling points. One disadvantage of using Monte Carlo integration 

methods is that there is slow convergence. However, this 𝑂( !
!!
) convergence rate is 

independent of the dimension of the integral.  

3. Genz Functions  

 The functions integrated in the example are six Genz functions: oscillatory, 

exponential, continuous, Gaussian, corner-peak, and product-peak.  These functions can 
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vary in dimension, and are integrated over [0,1]d.  Since we have closed form expressions 

for their exact integrals over [0,1]d , the errors in our quadrature and Monte Carlo 

integrations can be calculated.   

B. Implementation 

The example contains three files: 

• full_quad.py: a script to compare full quadrature and Monte Carlo integration 

methods 

• sparse_quad.py: a script to compare sparse quadrature and Monte Carlo integration 

methods. 

• quad_tools.py: A script containing functions called by full_quad.py and 

sparse_quad.py.  

 

Upon running either sparse_quad.py or full_quad.py, the user is prompted to select a 

Genz function and enter the desired dimension. In full_quad.py, the user then enters the 

desired maximum number of quadrature points per dimension. If sparse_quad.py is being 

run, the user then enters the desired maximum level. In both cases, multiple quadrature 

integrations are performed with a varying number of quadrature points per 

dimension/level up to the maximum as specified by the user. For each quadrature 

integration performed, a Monte Carlo integration is also performed using the same 

number of sampling points as the total number of quadrature points. Then, a graph is 
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created displaying the total number of sampling points versus the absolute error in the 

integral approximation. 

 

C. Sample Results  

The following figures show sample results of running the scripts. In figure 1, 

full_quad.py was run with the Genz Exponential model in dimension 5, with a maximum 

number of quadrature points per dimension of 10. In figure 2, sparse_quad.py was run 

with the Genz continuous model in dimension 14 with a maximum level of 4.           

 

 

           Figure 1: Sample results of full_quad.py                  Figure 2: Sample results of sparse_quad.py  

 

In both cases, the random and deterministic quadrature approaches both converge 

as the number of sample points is increased. The deterministic quadrature methods do 
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show faster convergence than the random Monte Carlo approach. More details and results 

will be included in the UQTk v. 3.0 manual, scheduled for release in Fall 2015. 

 

III. TUTORIAL LECTURE HEAT TRANSFER EXAMPLE 

In addition to including comprehensive examples in software manuals, it is also 

important to carefully select the examples that are used to introduce the fundamentals of 

UQ to an audience. Since the audience may not consist of experts in the presenter’s field, 

it is important to make sure the examples are accessible to a wide audience. With this in 

mind, I added a new example involving heat loss through a window to a tutorial lecture 

that my mentor Bert Debusschere has presented to various audiences.   

 Using heat transfer through a window is a good introductory example because 

specialization in a particular field is not required to understand the concept of heat loss 

through windows. In the example, the heat flux Q can be calculated using samples of the 

following2 six parameters: Room temperature in K (Ti), Outdoor temperature in K (To), 

Wall thickness in m (dw), Brick wall conductivity in W/mK (kw), inner convective heat 

transfer coefficient in W/m2K (hi), and outer wall convective heat transfer coefficient in 

W/m2K (ho). 

The heat flux Q is calculated from these 6 parameters using the following forward 

model2: 

 𝑄 =   ℎ!   𝑇! − 𝑇! =   𝑘!
(!!!!!)
!!

  =   ℎ!  (𝑇! − 𝑇!  ) (3) 
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With the model and values for the 6 parameters, we have three linear equations and the 

three unknowns Q, T1, and T2. Thus, given values of the parameters, we can easily obtain 

a value for Q.  

However, if there is uncertainty in the values we have for our parameters, this will 

create uncertainty in our output Q. We assume that our 6 parameters follow Gaussian 

distributions and we generate a large number of samples using a Monte Carlo (random) 

sampling approach. With these sample parameter values, we can calculate a large number 

of samples for Q. Using these samples of Q, one can generate a probability density 

function for the heat flux.  

This example provides an explanation of why it is necessary to quantify the 

uncertainty in model outputs, while using a scenario that can be understood by a wide 

audience. It also explains at a high level the process that must be carried out to quantify 

the uncertainty in the output Q given uncertain inputs to the forward model. Since Monte 

Carlo sampling methods are easy to understand, this example allows one to recognize the 

need for UQ without having to learn about Polynomial Chaos Expansions (PCEs), a 

commonly used method to compactly represent random variables3. The scenario of heat 

loss through a window is also very relevant to most individuals, as heat loss through 

windows will increase home heating costs. For these reasons, this example is an excellent 

one to include in a tutorial lecture that introduces the fundamentals of UQ.  

 

IV. RADIATIVE HEAT TRANSFER EXAMPLE 
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After creating the introductory heat transfer example, I expanded a heat transfer 

example that involved radiative heat transfer. The total heat flux was again computed 

from the same six uncertain parameters, but the forward model changed slightly. If we 

assume that the radiative heat is lost to space at 0 K, the new forward model4 is as 

follows: 

 𝑄 =   ℎ!   𝑇! − 𝑇! =   𝑘!
(!!!!!)
!!

  =   ℎ!   𝑇! − 𝑇!   +   𝜀𝜎𝑇!! (4) 

In this model, 𝜀 is the emissivity of the window 1, 0.95, and 𝜎 is the Stefan-Boltzmann 

constant.  Although this system of equations is now nonlinear, a nonlinear solver built-in 

to Python can be used to quickly obtain a value of Q given samples of our six parameters.  

 Rather than assuming that the heat is lost to deep space, we could more reasonably 

assume that it is lost to the atmosphere. If we let TA represent the temperature of the 

atmosphere, then our forward model4 becomes: 

 𝑄 =   ℎ!   𝑇! − 𝑇! =   𝑘!
!!!!!
!!

  =   ℎ!   𝑇! − 𝑇!   +   𝜀𝜎(𝑇!! − 𝑇!!) (5) 

We assumed that TA was an uncertain, Gaussian parameter as well, and again used a 

nonlinear solver to obtain a value of Q given samples of the seven parameters.  

 This heat transfer example is still a work in progress, but will be incorporated into 

a tutorial lecture. The example will analyze which parameters have the most influence on 

the total heat flux, and will be an introduction to sensitivity analysis.  Another extension 

could expand the example to investigate how the heat flux is affected if we assume the 

window is double paned or that radiative heat sources are present inside the room. This 

radiative heat transfer example will also be incorporated into a tutorial on using the 
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Python interface of UQTk to quantify the uncertainty in output Q through spectral 

projection methods. Currently, the examples in the UQTk distribution call C++ apps to 

perform these spectral projections, and it is a work in progress to create an example script 

that performs this task fully using the Python interface. 

 

V.  CONCLUSION  

 Throughout my SULI internship this summer, I worked on projects to help make 

UQ methods more accessible to the scientific community at large. As I was unfamiliar 

with these methods myself before I began my internship, I was able to ensure that the 

examples I created would be at an appropriate introductory level. As my main task, I 

created a tutorial example on using the Python interface of software known as UQTk to 

perform numerical integrations. This example consisted of scripts that are included in the 

software distribution, along with a thorough explanation of how to use these scripts to run 

an example. My second project was to create an example on the fundamentals of UQ to 

include in a tutorial lecture that my mentor Bert Debusschere presents at workshops. This 

example involved heat transfer through a window, a scenario that is relevant to most 

individuals and easy to conceptualize. For my third task, I worked on expanding this heat 

transfer example to include radiation. This project is still a work in progress, but will be 

incorporated into tutorials lectures in the future.  

During my short ten weeks at Sandia, I’ve learned a lot. I got a glimpse into the 

field of uncertainty quantification, and saw first hand what unique job opportunities are 

available at DOE national laboratories. I gained more experience programming in 
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Python, learned how to improve my documentation for files that will be run by others, 

and also learned how to write documents in LaTex. These are just a few of the valuable 

skills I’ve gained during my SULI internship, and I am very thankful to have had this 

learning opportunity.  
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